Cardiovascular Disease in the US Fire Service: Past, Present and Future

STEFANOS N. KALES MD, MPH, FACP, FACOEM

MEDICAL DIRECTOR, EMPLOYEE HEALTH & INDUSTRIAL MEDICINE CAMBRIDGE HEALTH ALLIANCE

ASSOCIATE PROFESSOR OF MEDICINE HARVARD MEDICAL SCHOOL

ASSOCIATE PROFESSOR & DIRECTOR, OCCUPATIONAL MEDICINE RESIDENCY, HARVARD SCHOOL OF PUBLIC HEALTH

Cardiovascular Disease in the US Fire Service: Past, Present and Future

STEFANOS N. KALES MD, MPH, FACP, FACOEM

MEDICAL DIRECTOR, EMPLOYEE HEALTH & INDUSTRIAL MEDICINE CAMBRIDGE HEALTH ALLIANCE

ASSOCIATE PROFESSOR OF MEDICINE HARVARD MEDICAL SCHOOL

ASSOCIATE PROFESSOR & DIRECTOR, OCCUPATIONAL MEDICINE RESIDENCY, HARVARD SCHOOL OF PUBLIC HEALTH

Cardiovascular Disease in the US Fire Service: Past, Present and Future?

STEFANOS N. KALES MD, MPH, FACP, FACOEM

MEDICAL DIRECTOR, EMPLOYEE HEALTH & INDUSTRIAL MEDICINE CAMBRIDGE HEALTH ALLIANCE

ASSOCIATE PROFESSOR OF MEDICINE HARVARD MEDICAL SCHOOL

ASSOCIATE PROFESSOR & DIRECTOR, OCCUPATIONAL MEDICINE RESIDENCY, HARVARD SCHOOL OF PUBLIC HEALTH

Grant Support / Disclosures

Funding: Grant No. EMW-2006-FP-01493 (PI: Kales, SN) Grant No. EMW-2009-FP-00835 (PI: Kales, SN) U.S. Department of Homeland Security

Consultant: Novartis Pharmaceuticals (2009-2010)

Paid expert witness, various entities, medico- legal reports

1860's: Fireman's Fund

San Francisco was a "Goldrush Town" whose economic growth was limited by frequent fires in its wooden buildings.

Volunteer firefighters worked without remuneration despite their risks.

Insurance companies wary of offering coverage to San Francisco-based businesses.

http://www.fundinguniverse.com/company-histories/FIREMANS-FUND-INSURANCE-COMPANY-Company-History.html

1860's: Fireman's Fund

In 1863 a ship's captain, William Holdredge, created Fireman's Fund Insurance Company to insure San Franciscans. Success would depend ability to protect property from fires.

To motivate firefighters, Holdredge established a retirement fund for the firemen, financed by 10% of his company's profits.

http://www.fundinguniverse.com/company-histories/FIREMANS-FUND-INSURANCE-COMPANY-Company-History.html

PAST: 1903 William Osler, мо

Photo: 1911, Library of Congress

Angina Pectoris

-Assoc. w/ Arteriosclerosis

-Predominantly Men

-Many Die Suddenly w/o Warning

Principles and Practice of Medicine, by Sir William Osler.

PAST: 1903 William Osler, мо

Angina Pectoris

-Tobacco abuse Coronary Spasm Arteriosclerosis

-Precipitants: Exertion Strong Emotions/ Anger Influenza

Principles and Practice of Medicine, by Sir William Osler.

Early Advances in CVD

1915

Photo: 1911, Library of Congress

Mt. Sinai sets ups its electrocardiographic (EKG) laboratory under Dr. Bernard Oppenheimer.

1929

Dr. Arthur Master of Mt. Sinai develops "Master Two-Step," first standardized cardiac stress test.

http://www.mountsinai.org/patient-care/service-areas/heart/mount-sinai-heart-today/mount-sinai-firsts

·

Firefighters & Increased Mortality

Hunter, A. (1907-1908). Mortality among insured lives engaged in certain occupations involving additional hazard. Transactions of American Society of Actuarians, 10, 44.

Hunter, A., and Rogers, O. H. (1920). Influence of occupation upon mortality. Transactions of the Actuarial Society of America, 21, 16.

Hunter, A. (1927). Occupational mortality. Transactions of the Actuarial Society of America, 28, 180.

Jenkins, W. A. (1930). A mortality experience of city firemen. Records of the American Institute of Actuaries, 19, 65.

1934: First Heart & Lung Law

The IAFF assisted locals in Pennsylvania.

Passed the first Heart and Lung Act, Worker's Compensation Act, and the Occupational Disease Law.

http://iaff2498.org/visitors/history-of-iaff.html

Firefighting and Heart Disease

1953:

NATHANIEL E. REICH, M.D., F.C.C.P.* Brooklyn, New York

"Sufficient evidence...in recent years (for) wider acceptance of firefighting as an occupational factor in the production or aggravation of certain heart diseases..."

Etiologic factors: heat/cold, exertion, stresses, "smokes and gases...to which firemen are repeatedly subjected..."

Dis Chest 1953;24;304-309 (http://chestjournal.chestpubs.org/content/24/3/304)

1953:

Firefighting and Heart Disease

NATHANIEL E. REICH, M.D., F.C.C.P.* Brooklyn, New York

Recognized:

HTN & Arteriosclerosis as Synergistic

Acceleration of "normal" Atheromatous changes leads to premature CAD

Plaque rupture and MI can follow exertion

1950s era fire fighters, Texas

Dis Chest 1953;24;304-309 (http://chestjournal.chestpubs.org/content/24/3/304)

1953:

Firefighting and Heart Disease

NATHANIEL E. REICH, M.D., F.C.C.P.* Brooklyn, New York

Firefighting causes marked change in CV hemodynamics

"Obvious that...underlying heart disease can be markedly affected by this change..."

Dis Chest 1953;24;304-309 (http://chestjournal.chestpubs.org/content/24/3/304)

1957-58: John P. Redmond

Joined Chicago FD in 1912

President of IAFF 1946-1957

Sudden death December 1957, "occupational heart disease"

http://iaff2498.org/visitors/history-of-iaff.html

1957-58: John P. Redmond

John P. Redmond Foundation established 1958

Focused on health & safety of firefighters.

Research used to lobby for statutes & benefits to firefighters with heart and lung disease.

http://iaff2498.org/visitors/history-of-iaff.html

1960's: Heart Presumption Laws

By 1960's, "Heart Presumption" laws established in most US states

Most of the laws date back to before 1965

(Melius J. 1995)

1960's: Modern EMS Begins

http://www.iaff4173.com/History/index.html

1970's: Barnard & the LA FD

Stress testing and CAD RF's in the LA FD vs. Insurance Executives (JOM 1975).

FF Less HTN >160/90 (2% vs 25%) & Chol >260 (12% vs. 18%)

FF more smoking (32% vs 26%)

FF 10% Ischemic ETT vs. 8% of Executives

1970's: Barnard & the LA FD Heart rate and ECG Responses of Fire Fighters (JOM 1975).

35 FF responding to 189 alarms

HR increases: mean 30 bpm above bsln in 1st minute (max 80 bpm)

During fires high heart rates for extended periods.

One FF, 188 bpm for 15 minutes at a structure fire

Mortality among Boston firefighters, 1915–1975*

A. W. MUSK**, R. R. MONSON, J. M. PETERS, AND R. K. PETERS

From the Departments of Physiology and Epidemiology, Harvard School of Public Health, 565 Huntington Avenue, Boston, MA 02115, USA

ABSTRACT Although the nature of firefighting involves particular health hazards, previous mortality and morbidity studies of firemen have produced inconsistent evidence for an increased risk of mortality from cardiovascular disease, respiratory disease, cancer and accidents. Mortality experience since 1915 has been examined in 5655 Boston firefighters, comprising all male members of the city fire department with three or more years of service. The observed cause of death as stated on the death certificates of 2470 deceased firefighters has been compared with the numbers expected based on rates for the male population of Massachusetts and of the United States of America. Among all firefighters, deaths from all causes were 91% of expected. The standardised mortality ratio (SMR) was markedly reduced (less than 50) for infectious disease, diabetes, rheumatic heart disease, chronic nephritis, blood diseases and suicide. The SMR was 86 for cardiovascular deaths, 83 for neoplastic deaths, and 93 for respiratory deaths. The SMR for accidents was 135 for active firefighters. The results suggest that the survival experience of firefighters is strongly influenced by strict entry selection procedures, ethnic derivation, and sociocultural attributes of membership. While excessive morbidity has been demonstrated in firefighters, there does not appear to be a strong association between occupation and cause-specific mortality.

Late 1970-1980's: CVD ~45% all Deaths

Source: NFPA.org

Heart Deaths by Occupation

% of On-Duty Deaths caused by CVD

Firefighters	45%
Police	22%
Overall*	15%
Construction	11.5%
EMS	11%

*Average % of all Occupational Fatalities, all industries

AMERICAN JOURNAL OF INDUSTRIAL MEDICINE 30:331-340 (1996)

Risk Factors for Coronary Heart Disease Among Firefighters in Cincinnati

Charles J. Glueck, MD, William Kelley, MD, Ping Wang, PhD, Peter S. Gartside, PhD, Donald Black, MD, and Trent Tracy, PA

Prospective study: rate of MI's lower than in NHANES population of similar age 1.35 vs 2.07 MI's/ 1000 P-Years (NS)

CHD and MI incidence were largely explained by well-known CVD Risk Factors Age, smoking, BP, BMI, Lipids

necoem.org

Cohort Studies vs. Presumption Laws

- Definitive evidence of an increased CHD risk in Firefighters lacking.
- Based on >/=10 cohort mortality studies Firefighters' risk of CHD Death SMR of ~0.9

 High proportion of CHD deaths and recognition of Cardiovascular Stressors has led to

"Heart Presumption" laws in 37 / 50 states and 2 Canadian Provinces

Scope of the Problem

- 1977-2006: CVD ~45% on-Duty Deaths (~ 45 / year)
- ~ 17 Non-fatal CV events for each Fatal Event
- Morbid & Mortal CVD events 800-1000/yr
- Affects 1 in 1000-2000 per year

(If Off-duty included, Many More Affected...)

Emergencies & Cardiovascular Risk

Long Stretches of relative inactivity

Brief periods of intense, unpredictable, life-threatening action

Adrenergic surges and high demands on CV system

Environmental Health: A Global Access Science Source

Research

Open Access

BioMed Certral

Firefighters and on-duty deaths from coronary heart disease: a case control study Stefanos N Kales^{*1,2}, Elpidoforos S Soteriades^{1,2}, Stavros G Christoudias¹ and David C Christiani^{2,3,4}

Methods: Case-control study, 52 male firefighters CHD deaths investigated by NIOSH.

Control population: 51 male firefighters on-duty trauma deaths

Figure One. Circadian Pattern of CHD Deaths in Firefighters versus Emergency Calls and Compared to General Population. From Kales et al, ref.14

Quartile of time of day

CHD Deaths vs. Time Spent in

Each Activity

Job Activity

Emergency Duties and Deaths from Heart Disease among Firefighters in the United States

Stefanos N. Kales, M.D., M.P.H., Elpidoforos S. Soteriades, M.D., Sc.D., Costas A. Christophi, Ph.D., and David C. Christiani, M.D., M.P.H.

The NEW ENGLAND JOURNAL of MEDICINE

Table 4. Risk of Death from Coronary Heart Disease among Firefighters Engaged in Emergency Duties and Physical Training as Compared with Firefighters Engaged in Nonemergency Duties.*

Duty	Municipal Fire Department		Large Metropolitan Fire Departments		National Data	
	Odds Ratio (95% CI)	PValue	Odds Ratio (95% CI)	P Value	Odds Ratio (95% CI)	PValue
Fire suppression	53 (40-72)	< 0.001	12.1 (9.0–16.4)	< 0.001	136 (101–183)	< 0.001
Alarm response	7.4 (5.1–11)	< 0.001	2.8 (1.9-4.0)	< 0.001	14.1 (9.8–20.3)	< 0.001
Alarm return	5.8 (4.1-8.1)	< 0.001	2.2 (1.6-3.1)	< 0.001	10.5 (7.5–14.7)	< 0.001
Emergency medical services and other nonfire emergencies	1.3 (0.9–2.0)	0.16	0.5 (0.3–0.8)	<0.001	2.6 (1.8–3.9)	<0.001
Physical training	5.2 (3.6–7.5)	< 0.001	2.9 (2.0-4.2)	< 0.001	6.6 (4.6-9.5)	< 0.001
Nonemergency duties (fire sta- tion and other)	1.0		1.0		1.0	

Type of Duty	Kales et al 2003 (relative risk of CHD death)	Holder et al 2006 (relative risk of heart event leading to retirement)	Kales et al 2007 (relative risk of CHD death)
Fire suppression – OR** (95% Cl [£])	64.1 (7.4-556)	51 (12-223)	53 (40-72)
Physical training – OR** (95%Cl [£])	7.6 (1.8-31.3)	0.68 (0.2-2.7)	5.2 (3.6-7.5)
Alarm response – OR** (95% Cl)	5.6 (1.1-28.8)	6.4 (2.5-17)	7.4 (5.1-11)
Alarm return –OR (95% Cl [£])	3.4 (0.8-14.7)	0.37 (0.07-1.8)	5.8 (4.1-8.1)
EMS and other non-fire emergencies – OR** (95% CI [£])	1.7 (0.5-5.9)	0.75 (0.3-1.8)	1.3 (0.9-2.0)
Firehouse and other non- emergency activities – OR** (95% CI [£])	1.0	1.0	1.0

Figure 1. Daily Cardiovascular Events in the Study Population from May 1 to July 31 in 2003, 2005, and 2006.

The FIFA World Cup 2006 in Germany started on June 9, 2006, and ended on July 9, 2006. The 2006 World Cup matches with German participation are indicated by numbers 1 through 7: match 1, Germany versus Costa Rica; match 2, Germany versus Poland; match 3, Germany versus Ecuador; match 4, Germany versus Sweden; match 5, Germany versus Argentina; match 6, Germany versus Italy; and match 7, Germany versus Portugal (for third-place standing). Match 8 was the final match, Italy versus France.

Cardiovascular Events during World Cup Soccer. Wilbert-Lampen, et al. NEJM 2008

Deaths due to Myocardical Infarction and Acute Respiratory Morbidity

Madjid, M et al European Heart Journal 2007

Environmental Health: A Global Access Science Source

Research

Open Access

Firefighters and on-duty deaths from coronary heart disease: a case control study Stefanos N Kales^{*1,2}, Elpidoforos S Soteriades^{1,2}, Stavros G Christoudias¹ and David C Christiani^{2,3,4}

Reviewed all completed fatality reports on NIOSH website from 1996- December 2002.

52 male firefighters who died of CHD

310 firefighters examined in 1996 and documented as professionally active in firefighting in 1998

Firefighter Heart Presumption Retirements in Massachusetts 1997–2004 (JOEM October 2006)

Jonathan D. Holder, DO, MPH Leonard A. Stallings Lynne Peeples, MS John W. Burress, MD, MPH Stefanos N. Kales, MD, MPH

362 Heart presumption retirements 278 CHD retirements (77%)

84 Non-CHD retirements

HTN 30 (36%) AFIB, Flutter or SVT 19 (23%) Cardiomyopathy 11 (13%) CVA 11 (13%) Syncope 5 (6%) Aortic Aneurysm 4 (5%) Other 4 (5%)

Predictors of On-Duty Coronary Events in U.S. Male Firefighters JR Geibe, J Holder, L Peeples, AM Kinney, JW Burress, SN Kales 2008;101:585-589.

County is to be a set of the set and a state of the second state of the 10.00

ALC: NOT THE OWNER OF rearran shaft terraria bases haven the log to description and the log of the lo

Contraction of the local sectors of the local secto and the first state of the second state of the and the second second increased that having the states of

the standard field of Vision

Adapted and Society in a March Street of the

Companying Contraining

Sylands Repaired as the Contraction of the state in the 10.0

10.00

Additional second signal second

Case-Fatality Study

87 Acute On-Duty CHD Fatalities

compared with

113 Non-Fatal, On-Duty CHD Events

Hypertension & CV DZ Outcomes

Endpoint	Hypertension Criteria	Adjusted OR (95% CI)	Study Design
Incident CHD	SBP > 140	6.1 (2.6-14.2) (unadjusted)	Prospective Cohort (Glueck et al)
	DBP > 90	4.9 (2.1-11.4) (unadjusted)	
CHD Retirement	>/=140/90, Dx of HTN, or	1.2 (0.6 –2.4)	Retrospective Case-Control
Non-CHD CVD Retirement	Anti-HTN Medication	4.8 (1.3-17.9)	

Hypertension & CV DZ Outcomes

Endpoint	Hypertension Criteria	Adjusted OR (95% CI)	Study Design
On-Duty CHD Death	>/=140/90, Diagnosis of Hypertension,	4.7 (2.0-11.1)	Retrospective Case-Control
Case-Fatality for On-Duty CHD Events	or Anti- Hypertensive Medication	4.2 (1.8- 9.4)	Cross-Sect. Case-Fatality

Left Ventricular Hypertrophy

Independent risk factor for CVD.

- Increased Risk of Ventricular Arrhythmia
- Independent Predictor of Death

•57% of On-Duty CHD FF Fatalities had LVH at Autopsy!!

STATE OF THE ART

Blood Pressure In Emergency Responders

Table 4 | Baseline blood pressures for firefighters and police with and without later incident cardiovascular events

	Event (n	nm Hg)	No event	t (mm Hg)	Pv	alue	
Endpoint	Mean SBP	Mean DBP	Mean SBP	Mean DBP	Mean SBP	Mean DBP	Study design/population
Incident CHD ⁶²	140	92	125	82	<0.0001ª	<0.0001ª	Prospective cohort/ firefighters
Incident CHD ⁷⁹	141	88	134	84	<0.01 ⁺	<0.001 ⁺	Prospective cohort/police
Incident stroke ⁷⁹	146	91	134	84	<0.01 ⁺	<0.01 ⁺	Prospective cohort/police

CHD, colonary heart disease; DBP, diastolic blood pressure; SBP, systolic blood pressure. ^aAdjusted for age, race and BMI. ^bAdjusted for age.

Kales et al

AMERICAN JOURNAL OF HYPERTENSION

SMOKING & CV DZ Outcomes

Endpoint	Smoking Criteria	Unadjusted Odds Ratio or Hazard Ratio (95% CI)	Multivariable- Adjusted Odds Ratio or Hazard Ratio (95% CI)	Study Design
Incident CHD		5.7 (2.4 – 13.1)	P=0.001	Prospective Cohort
CHD Retirement		3.9 (2.5 - 6.2)	2.9 (1.3 – 6.3)	Retrospective Case-Control
Non-CHD Cardiovascular Retirement	Current Smoking (Last 12 months)	2.5 (1.2 – 5.1)	2.9 (0.6 – 13.6)	Retrospective Case-Control
On-Duty CHD Death		8.6 (4.2-17.4)	7.0 (2.8-17.4)	Retrospective Case-Control
Case-Fatality for On-Duty CHD Events		2.1 (1.2-3.9)	3.7 (1.6-8.4)	Retrospective Case-Fatality

Previously Diagnosed CHD & CV DZ Outcomes

Endpoint	CHD Definition	Unadjusted Odds Ratio or Hazard Ratio (95% CI)	Multivariable- Adjusted Odds Ratio or Hazard Ratio (95% CI)	Study Design
CHD Retirement	Prior MI,	29.6 (9.1 – 96)	8.8 (1.9 – 41.3)	Retrospective Case-Control
	Angioplasty/ Stent, CABG,			
On-Duty CHD Death	+ETT or CATH,	35.0 (9.5 -128)	15.6 (3.5-69)	Retrospective Case-Control
	CVA or Carotid Dz,			
Case-Fatality for On-Duty CHD Events	PAD	2.1 (1.1-4.1)	4.1 (1.6, 10.6)	Retrospective Case-Fatality

Cases with Prior CHD

Median Time: initial diagnosis to final event for fatalities & survivors: 40 vs 43 months

Fatalities: 74% evidence of myocardial damage 35% of survivors (p 0.007).

Often secondary CHD events between initial and final events.

Lipids and Incident CHD (Glueck et al)

Lipid	22 Men Developing CHD	784 Men Free of CHD	P Value
ТС	227 +/- 40	198 +/- 39	0.014
HDL	46 +/- 14	48 +/- 11	NS
LDL	148 +/- 38	127 +/- 35	0.04
TG	203 +/- 162	124 +/- 130	0.03

Obesity and CV DZ Events

Endpoint	Obesity Criteria	OR (95% CI) Or P value	Study Design
Incident CHD	BMI No CHD BMI CHD	P= 0.08	Prospective Cohort (Glueck et al)
CHD Retirement	BMI >/= 30	1.4 (1.0 – 1.9)	Retrospective Case-Control
Non-CHD CVD Retirement	BMI >/= 30	3.6 (2.0 – 6.4)	Retrospective Case-Control
Kales et al			

Obesity and CV DZ Events

Endpoint	Obesity Criteria	OR (95% CI)	Study Design
On-Duty CHD Death	BMI >/= 30	3.1 (1.5- 6.6)	Retrospective Case-Control
Case-Fatality for On-Duty CHD Events	BMI >/= 30	2.3 (1.0-5.4)	Retrospective Case-Control

Historical BMI changes in U.S. firefighters: 1981-2005

Table 3. Relative risk of Cardiovascular Outcome by risk factor

	On-Duty CHD Fatalities	Non-CHD Cardiovascular Retirements OR (95% CI)	CHD Retirements OR (95% CI)
Age ≥ 45 years old	18 (8.5- 40)	26 (13 – 51)	63 (35 – 111)
Current Smoking	8.6 (4.2-17)	2.5 (1.2 – 5.1)	3.9 (2.5 - 6.2)
Hypertension	12 (5.8 – 25)	11 (6.1 – 20)	5.4 (3.7 - 7.9)
Diabetes Mellitus	10.2 (3.7 – 28)	7.7 (2.9 – 20)	13 (6.1 - 28)
Cholesterol >/= 5.18 mmol/L (200 mg/dl)	4.4 (1.5 – 13)	1.1 (0.51 – 2.24)	2.4 (1.6 – 3.6)
Prior Diagnosis of CHD	35 (9.5 -128)	NA	30 (9.1 – 96)
Obesity, BMI >/=30	3.1 (1.5- 6.6)	3.6 (2.0 - 6.4)	1 .4 (0.96 – 1.93)

Source: NFPA.org

On-Duty Firefighter Deaths - 1977-2009

Source: NFPA.org

FUTURE

Physical Fitness, Activity and CHD Risk. (Williams, 2001)

Persons in the >/=75%ile of Fitness

>/=60% Lower Risk

Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001 May;33(5):754-61

Physical demand

- Wearing 60lb PPE
- Carrying 40lb tools
- Climbing ladders
- Advancing water-filled hose lines

Dragging victims

٠

Maximal Oxygen Consumption

44 ml/kg/min

OR

12.5 METS

NFPA sets the minimum fit capacity at 12 METS

ETT/CRF and Outcomes Study Populations

Prospective – White

Goal N >/=1200 Consented: 1072 Data Entry: >1000 Prelim Anal: >900

Retrospective-Orange

N ~ 4500 Completed bsin ETT 1998-2005

Physical Activity Components

FREQUENCY Most weeks, I exercise...(include home/work/gym & elsewhere). DURATION Most times that I do cardio or

aerobic exercise (e.g., jogging, brisk walking, bike, treadmill, etc.), I do an average of...each session.

INTENSITY

Most times that I exercise, I sweat...on average each session.

1 day or less	94	17.6%
2 - 4 days	321	60.1%
5 or more days	119	22.3%
< 15 min	72	13.5%
15 – 30 min	228	42.8%
30 – 45 min	158	29.6%
> 45 min	75	14.1%
Don't exercise too often	21	3.9%
Light sweat	95	17.9%
Moderate sweat	300	56.4%
Heavy sweat	21.6	21.8%

Exercise Tolerance Test Time as a f(x) of PA & BMI

Frequency

Duration

Intensity

Source	Sig.
Weekly Exercise	<0.001
BMI	<0.001
Age	<0.001

Source	Sig.
Session duration	<0.001
BMI	<0.001
Age	<0.001

Source	Sig.
Sweat	0.001
BMI	<0.001
Age	<0.001

TC/HDL Ratio as a f(x) of PA & BMIFrequencyDurationIntensity

Source	Sig.		
Weekly Exercise	0.006		
BMI	<0.002		
Age	0.13		

Source	Sig.
Session duration	0.11
BMI	<0.001
Age	0.24

Source	Sig.
Sweat	0.12
BMI	<0.001
Age	0.05

Decline of CRF with Age-Protection by PA

CRF and CV Events / Mortality

2009 Meta-Analysis of 33 Studies

>100,000 gen. population middle-aged subjects

Each 1 additional MET conveyed 13% decrease in all-cause mortality 15% decrease in CV events

Kodama et al

The future of aerobic exercise testing in clinical practice: is it the ultimate vital sign?

Ross Arena[†], Jonathan Myers¹ & Marco Guazzi²

VA Palo Alto Health Care System, Cardiology Division, Palo Alto, CA, USA University of Milano, San Paolo Hospital, Cardiology Division, Milano, Italy Author for correspondence: Departments of Physical Therapy, Internal Medicine & Physiology, Virginia Commonwealth University, Richmond, VA, USA ***** Tel., +1, 804,628,3633 ***** Fax: +1,804,828,811

Future Cardiology 2010

Risk Stratification by CRF

Very Low Fitness </=10 METS Highest Risk

Low Fitness >10-12 Mets Higher Risk

Medium Fitness >12-14 METS Intermediate Risk

High Fitness >14 METS

Low Risk

	METS >14	METS >12-14	METS >10-12	METS =10</th <th>p-value</th>	p-value
Ν	96	327	414	130	
Age	34.6 (8.0)	36.7 (8.1)	40.2 (7.4)	47.6 (7.4)	<0.001
BMI	26.0 (2.4)	28.1 (3.3)	30.0 (4.0)	32.8 (5.6)	<0.001
% Fat	16.4 (4.2)	20.4 (5.5)	20.6 (5.5)	24.7 (4.4)	<0.001
SBP	121 (12)	121 (12)	123 (12)	127 (13)	<0.001
Tot Chol	183 (33)	191 (33)	196 (39)	190 (45)	0.019
Tot Chol / HDL	3.6 (1.5)	4.3 (1.2)	5.1 (1.6)	5.2 (1.4)	<0.001
LDL	111 (33)	119 (29)	126 (33)	125 (37)	<0.001
HDL	54 (12)	47 (11)	41 (11)	38 (9)	<0.001
TGL	90 (51)	130 (96)	151 (146)	159 (119)	<0.001
Blood Glucose	89 (13)	92 (14)	95 (12)	102 (22)	<0.001
hs-CRP	1.1 (2.0)	2.1 (4.8)	3.5 (2.8)	Insuff data	0.031
	METS >14	METS >12-14	METS >10-12	METS =10</th <th>p-value</th>	p-value
---	-------------	----------------	----------------	----------------------------------	---------
Ν	96	327	414	130	
Total Treadmill Time (seconds)	804 (72)	672 (54)	584 (50)	512 (61)	<0.001
Max METS	15.0 (0.8)	13.4 (0.4)	11.1 (0.6)	9.0 (1.1)	<0.001
Heart Rate Recovery @ 1 min	35 (14)	33 (14)	27 (12)	25 (16)	<0.001
Autonomic Index (resting HR/HRR @ 1 min) (Lower- better)	2.0 (0.9)	2.6 (2.3)	2.8 (1.4)	3.4 (3.1)	<0.001
Chronotropic Insufficiency (Peak HR =90%)</td <td>5.2 %</td> <td>5.2 %</td> <td>16.4 %</td> <td>24.6%</td> <td><0.001</td>	5.2 %	5.2 %	16.4 %	24.6%	<0.001
Exaggerated BP (Peak >/=220/90)	17%	23%	19%	32%	0.005

Low CRF Predicts Abnormal Exercise Testing in Firefighters

	METS >14	METS >12-14	METS >10-12	METS =10</th
Ν	96	327	414	130
Stress EKG Abnormality	1.0	1.8 (0.2-15)	7.9 (1.1-58)	20 (2.7-152)
Abnormal HRR =12 BPM @ 1 min</th <th>1.0</th> <th>3.3 (0.4-26)</th> <th>4.0 (0.5-31)</th> <th>8.8 (1.1-69)</th>	1.0	3.3 (0.4-26)	4.0 (0.5-31)	8.8 (1.1-69)
ETT Abnl any Criteria	1.0	1.4 (0.5-4.2)	3.2 (1.1-9.1)	8.4 (2.9-24)

Characteristics of Low CRF METS </=12

56 % of Cohort

37% < 40 years

61% < 45 years

75 % of Obese FF's

47% of Overweight FF's

64% Exercised </=3x/WK

Prevalence of Trigger-Preventing Behaviors

Behavior	Recommendation	Compliant Firefighters (%)	Intervention Gap (%)
Aspirin	Daily male over 45 years	23	77
Physical exercise	30 min most days / week	23	77
Fish intake	2 servings per week	36	64
Flu vaccination	Every year	40	<mark>60</mark>
Smoking / Tobacco	Cessation	61	39

Take Home Messages

Strenuous Duties can Precipitate CV Events

CV Event victims have clinical CHD, subclinical disease & excess RF's

Many potential victims could be identified

Risk Profiles could be modified before Clinical Events manifest

Prevention

Known CHD and Emergencies Duties do NOT mix

Smoking should be prohibited

HTN & other RF's should be actively reduced

Proposed Management Scheme for Emergency Responders

<u>BP</u>

Normal

Prehypertension

Stage 1 Hypertension

Stage 2 Hypertension

<u>Action</u>

Unrestricted Population-Based Unrestricted Individual Education

Time-limited Clearance Rx & Evaluation Follow-up

Annual

6-12 mos per other RF's

6-12 months Expect improved BP

Restricted Rx & Evaluation Time-limited Clearance after Adequate BP Control

AMERICAN JOURNAL OF HYPERTENSION

Prevention

Maximal Exercise Tests to assist Risk Stratification

Sleep Hygiene

? Flu Shots

? ASA

Discussion / Questions