### Cardiovascular (and Thermal) Strain of Firefighting



Denise L. Smith, Ph.D. Gavin Horn, Ph.D

Firefighter's Cardiovascular Health and Safety Summit Illinois FSI, Sept 16-17<sup>th</sup>, 2010

### **Acknowledgements - Funding**



Copyright Board of Trustees of the University of Illinois 2010

### **Acknowledgements - Collaborators**

- Psychological & cognitive function effects of heat stress
  - Steve Petruzzello, Ph.D.
- Biomechanics
  - Liz Hsiao-Wecksler, Ph.D.
  - Karl Rosengren, Ph.D.
- Cardiovascular research
  - Bo Fernhall, Ph.D.
- Immunology
  - Jeff Woods, Ph.D.
- Pathology, sickness behavior
  - Gregory Freund, M.D.
- Firefighter training protocols and communications research
  - Brad Bone
  - Brian Brauer

# Outline



Section 1 – Firefighter Injury and Fatality Statistics
Section 2 – Conceptualizing SCE in the Fire Service
Section 3 – Research Agenda

Framework/Approach
Research Projects

Section 4 – Mitigating Risks in the Fire Service

# Section One Fatality Statistics



### **Relative risks**



### Firefighter Fatality Statistics (2009)



### **Firefighter Fatality Statistics**



### Section Two Conceptualizing Risks



### Complex Job of FF Theoretical Models



# **Firefighting Physical Demands**

#### **Strenuous work**

Climbing stairs Forcible entry Search and rescue



### **Heavy PPE**

> 22 kg † Metabolic work ↓ Heat dissipation



Hot and Dangerous Environment

Over 100º C routinely Chaotic Low visibility

## Characterizing Physiological Responses to Firefighting



# **Risk Profiles**



# Potential Mechanism of Sudden Cardiac Events



## Section Three Research Agenda



Framework/Approach

**Research Projects** 

### **Research Goals**

Quantify the **cardiovascular strain** (cardiac, vascular, blood) associated with firefighting activity

.....and test interventions designed to lessen cardiovascular strain and the risk of injury or fatality, and improve performance

### Theoretical Model: Physiological Stress of Firefighting



# Framing a Research Agenda

|                                                                                   | Cardiovascular Effects of FF |          |                     |
|-----------------------------------------------------------------------------------|------------------------------|----------|---------------------|
| Firefighting                                                                      | Cardiac                      | Vascular | Blood<br>(clotting) |
| Simulated Firefighting (IFSI)<br>• Short – Term<br>•Long- Term<br>•Other missions |                              |          |                     |
| Work in PPE (Skidmore)                                                            |                              |          |                     |
| Actual Firefighting (Skidmore)                                                    |                              |          |                     |

---- Tff---

**Interventions** (policies, pharmacological, technological)



| Variable                   | Body Mass Index (kg/m <sup>2</sup> ) |             |              |
|----------------------------|--------------------------------------|-------------|--------------|
|                            | <25.9                                | 25.9-29.5   | ≥29.5        |
|                            | (Group 1)                            | (Group 2)   | (Group 3)    |
| Intima-media thickness     | 0.44 (0.01)                          | 0.46 (0.01) | 0.52(0.01)*† |
| Aortic pulse wave velocity | 5.9(0.1)                             | 6.4(0.2)*   | 6.8(0.1)*    |
| β Stiffness                | 4.6(0.2)                             | 5.1(0.2)    | 6.2(0.4)     |

\* Different from group 1 (p<0.05)

† Different from group 2 (p<0.05)

Fahs et al., 2009, Am J Cardiol.

N=110 firefighters Age= 29.7±8.0 years

# **Simulated Firefighter Activities**









# Methods



- Subjects 23 firefighters
- Design RM (2 conditions: control rehab vs. enhanced rehab)
- Protocol 18 min FF drills
  - -Control or enhanced Rehab
  - 10 minute dummy drag
  - 120 min RECOVERY



### HR and Core Temp during FF and Recovery



NIOSH - 1R03OH009111



Figure 6. Changes in Rate Pressure Product (RPP) throughout the test protocol. Data from complete sets only (n=20). All timepoints are significantly different from the prefirefighting condition, dropping below this level before the 30 minute recovery time period in both conditions. (\* indicates significant condition affect at these time points)



Figure 7. Changes in Subendocardial Viability Ratio (SEVR) throughout the test protocol. Data from complete sets only (n=18) (\* indicates significant condition affect at these time points, dotted lines indicate the times where SEVR returns to pre-firefighting levels)

### **Platelet Data**



### Coagulatory an Fibrinolytic Fac

| Fibrinolysis         | Pre                 | Post           | 120 Post           |
|----------------------|---------------------|----------------|--------------------|
| Pai-1 act            | 2.94                | 2.38           | 2.35               |
| Pai-1 <u>agn</u>     | 24.17               | 26.23          | 21.94              |
| <u>Tpa</u> act       | 0.53                | 1.90           | 0.55               |
| Tpa agn              | 6.21                | 11.69          | 6.53               |
|                      |                     |                |                    |
|                      |                     |                |                    |
| Coagulation          | Pre                 | Post           | 120 Post           |
| Coagulation<br>FVIII | <b>Pre</b><br>88.33 | Post<br>126.83 | 120 Post<br>119.09 |
|                      |                     |                |                    |
| FVIII                | 88.33               | 126.83         | 119.09             |



# Changes in Cardiovascular Function as a Result of Prolonged Firefighting

Environmen

U.S. Department of Homeland Security - Assistance to Firefighters Grants Program (AFG)

Copyright Board of Trustees of the University of Illinois 2010





DHS AFG EMW-2007-FP-02328

Copyright Board of Trustees of the University of Illinois 2010

### Echocardiographic variables (systolic function)

|                          | Before    | After      |
|--------------------------|-----------|------------|
| LVEDD (mm)               | 53.0(6.1) | 51.9(6.7)* |
| LVESD (mm)               | 35.6(6.3) | 37.2(6.2)  |
| LV SF(%)                 | 33.0(6.3) | 28.6(6.0)* |
| LVEDV (cm <sup>3</sup> ) | 138(37)   | 132(38)*   |
| LVESV (cm <sup>3</sup> ) | 55(25)    | 61(25)     |
| Ejection fraction (%)    | 60.3(9.2) | 54-3(9-5)  |
| Stroke volume (ml)       | 82(20)    | 71(22)*    |

### **Echocardiographic variables (diastolic function)**

|                                      | Before   | After     |
|--------------------------------------|----------|-----------|
| Mitral E (cm s <sup>-1</sup> )       | 81(14)   | 71(14)*   |
| Mitral A (cm s⁻¹)                    | 45(9)    | 45(14)    |
| Mitral E/A                           | 1.9(0.4) | 1.7(0.6)  |
| TDI E' lateral (cm s <sup>-1</sup> ) | 7.8(3.1) | 6.3(2.7)* |
| TDI E' septal (cm s <sup>-1</sup> )  | 4.5(2.0) | 4.2(1.8)  |

# **Laboratory Studies**











# Laboratory Study

### **Study Purpose**

Investigate the physiological *recovery* from exercise in gear.





DHS AFG EMW-2007-FP-02581

### **Methods**





Subjects – 14 moderately trained FF

**Design – RM** (2 conditions: PPE vs shorts/Tshirt)

Protocol — 20 min exercise — 90 min RECOVERY



DHS AFG EMW-2007-FP-02581





## Heart Rate during Exercise



N=14 Age= 37.9±8.1 BMI= 28.4±3.0

### Rate Pressure Product During Recovery (Myocardial oxygen consumption)



N=14 Age= 37.9±8.1 BMI= 28.4±3.0



## Myocardial Oxygen Supply (SEVR)



N=14 Age= 37.9±8.1 BMI= 28.4±3.0

DHS AFG EMW-2007-FP-02581

### **Actual Firefighting Activities**





## Protocol



Oxnard and Boston FDs 24 hours of monitoring – PSM CV strain/Autonomic function

> Alarm response During FF activities Recovery







DHS AFG EMW-2007-FP-02581





## Heart Rate Response while On Scene a Fire Call



FIRA

OXNARD

### Example of raw data from single subject

# Summary

- Firefighting activity places significant strain on the CV system, affecting the heart, vessels and blood
- Firefighters must be physically fit and medically healthy to undertake such strenuous work

# Section Four Mitigating Risk



**Risk Identification** 

Design Strategies to Modify Risks

- Lessen Individual Risk Factors
- Lessen Risks Associated with Job

Test Strategies (Scientific Hypothesis Testing)

### **Mitigating Risk**

Preparing Firefighters to Meet the Unique Stresses of Firefighting

- Medically qualified
- Physically fit
- Well hydrated
- Properly trained

### **Mitigating Risk**

Decreasing the Stress/Strain of Firefighting

- Staffing
- Approach to fire suppression (aggressive, defensive)
- Rehab (and recovery)

# Discussion



### Example: Decrease Strain of Firefighting



### Example: Decrease Risks to Firefighter

