

22

Appliances

22**Knowledge Objectives (1 of 2)**

- Describe a variety of common appliances and their components and operation.
- Explain how to conduct an investigation of a fire involving an appliance.

22**Knowledge Objectives (2 of 2)**

- Determine the origin of a fire involving an appliance.
- Determine the cause of a fire involving an appliance.

22**Skills Objectives**

- Evaluate appliances at a fire or explosion scene.

22**Introduction**

- Appliances may be ignition source
- Information in this chapter assumes that:
 - Origin has been determined
 - Appliance is suspected ignition source

22**Recording the Scene When an Appliance Is Involved**

- Indicators that appliance caused fire
 - Fire patterns placing area of origin near appliance
 - Severe fire damage to appliance
 - Arcing or melting on conductors in or near appliance
- Document with photographs, diagrams, measurements

22

Photographs

- Photograph appliance from different angles
 - Include views of electrical and fuel supply lines
 - Record entire area
 - Record positions of controls and thermal protection devices

22

Diagrams and Measurements

- Locate appliance on diagram
- Include measurements locating appliance in relation to:
 - Fixed landmarks
 - Combustible fuels
 - Power sources

22

Documenting the Appliance (1 of 3)

- Primary power source
- Power source, energy storage
- Energy source adapter
- Power/fuel source feed and connections
- External overload protection
- Bonding and grounding
- Power for controls
- Internal circuit protection and disconnects
- Operational controls

22

Documenting the Appliance (2 of 3)

- Feedback devices and sensors
- Movable parts
- Cleaning, cooling, heating components
- Clocks and timers

22

Documenting the Appliance (3 of 3)

- Obtain from labels or plates on the appliance:
 - Manufacturer
 - Model and serial number
 - Date of manufacture
 - Name of product
 - Warnings and caution notes
 - Recommendations and ratings
 - Additional data, such as installation diagrams

22

Recovery and Reconstruction of Appliance Components (1 of 2)

- Gather components moved during fire or firefighting
- Reconstruct appliance in prefire location
- If necessary, arrange for truck or trailer to transport appliance to secure location
- Do not test or operate appliance at fire scene
 - X-rays may be useful

22

Recovery and Reconstruction of Appliance Components (2 of 2)

- This ohmmeter is being used to check the electrical continuity of a coffeemaker.

Courtesy of Ray Franco

22

Determining the Origin of a Fire Involving an Appliance

- Fire patterns place appliance at point of origin
 - Appliance shows more severe damage
 - Damaged parts not necessarily an indicator
- Verify that electrical power was on at time of fire
 - Document power source back to service panel
- Reconstruct the scene.

22

Determining the Cause of a Fire Involving an Appliance (1 of 3)

- Was the appliance:
 - Attached to power source?
 - Energized?
 - Operating poorly recently before fire?
- Could recent operating conditions generate significant heat?
- Consider moisture, nearby combustible materials

22

Determining the Cause of a Fire Involving an Appliance (2 of 3)

- Water-using appliances
 - Consider relation to water/moisture
- Heat-emitting appliances
 - Consider nearby combustibles
- Large current appliances
 - Consider poor connection or overloaded circuit

22

Determining the Cause of a Fire Involving an Appliance (3 of 3)

- Heavy appliances
 - Consider short circuit at power cord
- For appliances with controls, timers, or internal electronics
 - Consider poor circuit board connection problems, relay, power switching or control component failures, or contamination of sensor connections

22

Appliance Operation

- Investigator should thoroughly understand
 - Including understanding of safeguards
- Document any modifications to appliance
- Determine appliance were energized and on at time of fire

22

Disassembly

- Create protocol with objectives, rules, and extent of disassembly before proceeding
- Take notes and photographs or videos of process
- Consider X-rays if disassembly is not possible.

22

Exemplar Appliances

- Exemplar is exact duplicate of appliance in question
 - Can be used to understand how appliance works
 - Can be used to test a proposed ignition scenario

22

Appliance Components

- Each appliance:
 - Has a different use
 - Is constructed differently

22

Housings (1 of 2)

- The housing is the outer shell of an appliance.
- May contain:
 - Steel
 - Strong and durable
 - Melts at high temperatures
 - Aluminum
 - Low melting temperature

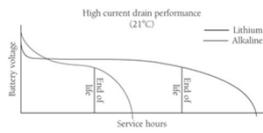
22

Housings (2 of 2)

- May contain:
 - Other Metals
 - Includes zinc and brass
 - Plastic
 - Melts at low temperatures
 - Chars and decomposes at high temperatures
 - Wood, Glass, Ceramics

22

Power Sources (1 of 3)

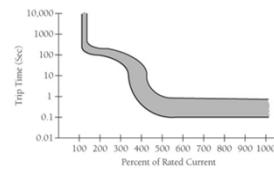

- Alternating current supplied by utility company
- Power source components include:
 - Electrical cords
 - Can comprise two or three conductors
 - Plugs
 - Conductors may be attached to the prongs inside a molded plastic housing.

22

Power Sources (2 of 3)

- Power source components include (cont'd):
 - Step-down transformers (adapters)
 - Batteries

- Lithium batteries have greater energy density than lead-acid



22

Power Sources (3 of 3)

- Power source components include (cont'd):
 - Protective devices (fuses, circuit breakers)

- Circuit breakers trip as a result of external fire or when current flow exceeds rating of breaker

22

Switches (1 of 2)

- Postfire examination of an appliance switch can sometimes determine its state
- Types
 - Fluid pressure (capillary tube)
 - Bimetal
 - Expanding metal
 - Melting material
 - Motion switch

22

Switches (2 of 2)

- Contact damage can be important
 - Safety cutoff switches should not have pitting on the contact faces

22

Solenoids and Relays

- Used to control high-power circuits with a low-power circuit
- Examine contacts to see if they were stuck together during the fire.
- It is not possible to determine the status of electronic switches at the time of the fire.

22

Transformers

- Reduce ac voltage
- Isolate appliance from power source
- Components often survive a fire
- Internal damage of the windings may be shown by pattern of internal heating
 - Arching from turn to turn

22

Motors

- Small motors that drive cooling fans are generally not sources of ignition.
- AC motors usually have starting windings with a centrifugal switch to disengage the windings after startup.
- Permanent magnet motors can eliminate the commutation brushes, which can be a source of arcing.

22

Heating Elements

- Can ignite combustibles that are in contact with the element
- Safety features:
 - Sheathing
 - Fans
 - Heat tape
- High-resistance heating can also occur at poor connections.

22

Lighting (1 of 2)

- Incandescent, fluorescent, LED
- Fluorescent lighting systems
 - Electronic ballasts
 - Unsafe situation: IC malfunctions and semiconductor switch shorts circuit
 - Magnetic ballasts (reactor or transformer)
 - Common failures: arc penetrations into nearby combustibles

22

Lighting (2 of 2)

- High-intensity discharge (HID) lighting systems
 - Found in warehouses, manufacturing facilities
 - If arc tube ruptures, outer bulb may break and pieces might ignite combustibles where they land
 - If suspected cause, fixture and pieces must be preserved for examination

22

Miscellaneous Components

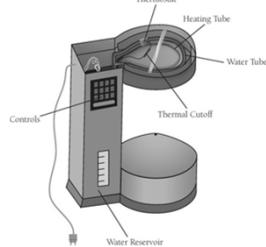
- Dimmers
- Speed Controllers
- Rheostats, wire resistors (in older appliances)
- Timers
- Thermocouples, thermistors,
- Sensors: pressure, flame, current, proximity

22

Common Residential Appliances

(1 of 6)

- Ranges and ovens
 - Leftover combustible materials

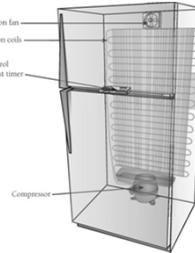


22

Common Residential Appliances

(2 of 6)

- Air conditioners and heat recovery systems
 - Dust
 - Motors can overheat
- Water heaters
 - Leaks
- Coffeemakers
 - Thermostats, thermal cutoffs, automatic timers



22

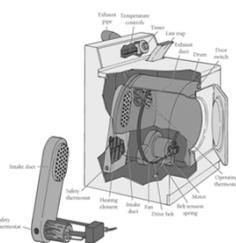
Common Residential Appliances

(3 of 6)

- Toasters
 - Blocked sensor
- Electric can openers
 - Electrical arcing
- Cooling fans
 - Capacitors
- Refrigerators
 - Damaged power cords or plugs, thermal cutoff failure

22

Common Residential Appliances


(4 of 6)

- Deep fat fryers
 - Thermostat failure
- Dishwashers
 - Moisture
- Microwave ovens
 - Dried out material
 - Metal objects
- Space heaters
 - Rough handling
 - Restriction of inlet air
- Electric blankets
 - Folded or bunched
- Window air conditioner units
 - Fan or compressor motor overheating
- Hair dryers and hair curlers
- Clothes irons

Common Residential Appliances

(5 of 6)

- Clothes dryers
 - Clogged lint filter
 - Frictional heating
 - Spontaneous combustion

22

Common Residential Appliances

(6 of 6)

- Consumer electronics
 - Resistive heating
 - Short circuiting of loose switches
 - Overcharged batteries

Summary

(1 of 6)

- In a fire scene, the most convincing indicators that an appliance caused the fire are:
 - Patterns that point to the area of origin being near the appliance
 - Severe fire damage to the appliance
 - Arcing or melting found on conductors in or near the appliance

22**Summary (2 of 6)**

- The investigator should evaluate the fire patterns on the appliance in relation to the remainder of the fire scene.
- The investigator should thoroughly understand how the appliance operated and its safeguards.

22**Summary (3 of 6)**

- Before beginning disassembly, a protocol should be created with the objectives, ground rules, and extent of disassembly identified based on the specific reason for carrying out the process.

22**Summary (4 of 6)**

- Postfire examination of a switch can sometimes determine its state and thus whether the appliance was energized at the time of the fire.

22**Summary (5 of 6)**

- Components of a transformer often survive a fire. Internal damage of the windings may be shown by a pattern of internal heating, arcing from turn to turn.

22**Summary (6 of 6)**

- Appliances with heating elements are designed to maintain a distance between the element and surrounding combustibles.