Fire Patterns

4

Knowledge Objectives

• Identify fire effects and understand their causes.
• Recognize fire patterns.
• Identify the cause of fire patterns.
• Analyze fire patterns to produce a hypothesis.

Skills Objectives

• Interpret fire patterns to determine the point of origin.

Introduction

• Recognition, identification, and analysis of fire effects and fire patterns
• Knowledge of fire dynamics is important to understand fire patterns.

Fire Effects and Fire Patterns (1 of 2)

• Fire effects = observable or measurable changes in material resulting from fire
• Fire pattern = visible or measurable changes or shapes formed by fire effects
• Fire investigator attempts to recreate fire development history and origin

Fire Effects and Fire Patterns (2 of 2)

• Primary physical evidence of a fire:
 – Burned materials
 – By-products of burning
• Pattern interpretation changes over time.
Fire Effects

- Knowledge of fire effects is necessary to identify and interpret fire patterns.
- Melting can help determine temperature in a given area.
- Temperatures at a location do not indicate a particular fuel source.

Mass Loss

- Can sometimes determine duration and intensity of a fire
 - There are many additional factors.
- Postfire analysis can use exemplars and undamaged portions of an object.
- As fire intensifies, mass loss increases.

Char (1 of 2)

- Carbonaceous material that has been burned
 - Wood char is most common.
 - There is no standard rate of char.

Char (2 of 2)

- Factors affecting rate of char:
 - Rate and duration of heating
 - Ventilation effects
 - Surface-to-mass ratio
 - Direction, orientation, and size of wood grain
 - Species of wood
 - Moisture content of the wood product
 - Any surface coating

Spalling (1 of 2)

- Chipping or pitting of concrete or masonry
 - Founds on floors, walls, ceilings
 - May show different coloration
 - May have existed prior to the fire
 - May be caused by heat or mechanical stress

Spalling (2 of 2)

- Spalling on the floor of a garage.
Oxidation (1 of 2)

- Basic chemical process associated with combustion
- Oxidation of noncombustible materials can produce:
 - Color and texture changes
 - Fire patterns

Oxidation (2 of 2)

- More pronounced oxidation can be caused by:
 - Higher temperature
 - Longer exposure

Melting

- Physical change of material from solid to liquid caused by heat
- Demarcation lines between melted and unmelted portions of a material can be useful.
- Each solid material has its own melting temperature.
- Can be difficult to distinguish from oxidation

Alloying of Metals

- Two metals, one in liquid state, come into contact and form a new material.
- Can look like melting

Thermal Expansion and Deformation

- Heat causes most materials to expand and change shape.
 - Temporarily or permanently
- Structural failures can occur as a result.
- Distortion indicates that melting temperature was never reached.

Smoke Deposits (1 of 2)

- May collect on cooler surfaces such as walls and windows
 - Especially during smoldering fires
- Color and texture do not indicate burning or heat release rate
- As fire grows, it consumes smoke deposits from earlier in fire
 - Referred to as a clean burn
Smoke Deposits (2 of 2)

- Clean burn
 - Created when fire oxidizes smoke deposits and consumes carbon

Calcination

- Occurs in plaster or gypsum wall surfaces
- Chemically bound water is driven out by heat.
- Gypsum wallboard reacts to fire in predictable manner
 - First paper burns off, then color changes
- Rate and depth do not indicate burn times.

Glass Effects (1 of 3)

- Glass deposits free of soot usually indicate early failure of the glass before accumulation of smoke.
- May result from:
 - Rapid heating
 - Damage prior to fire
 - Direct flame impingement

Glass Effects (2 of 3)

- Light bulb damage can indicate direction of heat source.

Glass Effects (3 of 3)

- Fractured glass is found in most structure fires.
- Window panes may pop out of frames.
- Crazing results from rapid cooling of glass.
 - Not from heating, as previously believed

Furniture Springs

- Damage can provide clues to:
 - Fire intensity
 - Duration
 - Direction of travel
- Does not indicate type of fire
Heat Shadowing

- Caused by object blocking travel of heat to a surface:
 - Radiated heat
 - Convected heat
 - Direct flame
- Creates discontinuous pattern

Protected Areas

- Object is shielded from:
 - Heat transfer
 - Combustion
 - Deposition
- Useful in reconstructing fire scene

Rainbow Effect

- Hydrocarbons do not mix with water.
 - Float on the surface
 - Interference pattern produces rainbow effect
- Produced by many materials

Fire Patterns (1 of 2)

- Visible or measurable physical changes, or identifiable shapes, formed by a fire effect or group of fire effects
- Three basic causes:
 - Heat
 - Decomposition
 - Consumption

Fire Patterns (2 of 2)

- Analyze fire patterns within the context of all the patterns.
- Used to determine the sequence of events that occurred during the fire
- When fires increase in size or burn for an extended period, fire patterns at the origin may be more difficult to identify.

Plume-Generated Patterns (1 of 3)

Fire patterns are two dimensional, but the fire plume creating the pattern was three dimensional.
Plume-Generated Patterns (2 of 3)

- When a fuel package is ignited, a plume of gas, smoke, and flame rises upward until it is contained or cooled.
- The heat release rate greatly affects the fire pattern.

Plume-Generated Patterns (3 of 3)

- Pattern shapes include:
 - V-shaped
 - Inverted cone
 - Hourglass
 - U-shaped
 - Circular
 - Pointer and arrow
- As plume develops, size and shape of pattern changes

Ventilation-Generated Patterns

- As pressure builds during combustion, hot gases and fire escape through openings with increased velocity.
- Well-ventilated fires increase the rate of material damage.
- Heavy damage is often found at ventilation areas, even if they are not the point of origin.

Hot Gas Layer-Generated Patterns (1 of 2)

- Prior to flashover, hot gas layer begins to descend
- Level of descent can be determined by examining the line of demarcation
- Sometimes referred to as containment patterns

Hot Gas Layer-Generated Patterns (2 of 2)

An example of a hot gas layer-generated pattern.

Patterns Generated by Full-Room Involvement

- Usually found on all exposed surfaces in the room
- Makes traditional patterns more difficult to document and analyze
- Material damage is more extensive
Suppression-Generated Patterns

- Fire suppression actions may create or change fire patterns.
 - Water streams may change direction of fire spread
 - Ventilation actions affect fire patterns.

Lines of Demarcation

- Produce a border between affected and less affected areas
- Numerous factors dictate where these lines form.

Patterns Detected in Fire Victims’ Injuries (1 of 2)

- Body should not be moved until it has been documented and analyzed
- Heat effects on the body:
 - Skin will redden, darken, blister, split, and char.
 - Muscle will dehydrate, contract, and shrink.
 - Pugilistic pose
 - Exposed bone will change in color and mass.

Patterns Detected in Fire Victims’ Injuries (2 of 2)

- Bodies found at fire scenes should be treated as evidence and interpreted for fire patterns.
- Investigators should also document injuries to those who have survived a fire.

Pattern Location (1 of 2)

- Fire effects can be three dimensional.
- Look for large-scale patterns such as aerial views of the roof.
- Look for small-scale patterns such as heat effects on wiring insulation.
- Examine all areas in a building for patterns.

Pattern Location (2 of 2)

- Wall patterns usually V-shaped or U-shaped
- Ceiling patterns above fire are usually circular
- Floor patterns depend on many conditions.
- Flashover and full-room involvement can produce relatively uniform burning.
Beveling (1 of 3)

• Beveling is an indicator of fire direction on wood wall studs.
• Bevel leans in direction of fire travel.

Beveling (2 of 3)

• Fire penetration of a horizontal surface
 – Potential causes include radiant heat, isolated smoldering objects, and ventilation.
 – Downward movement is not necessarily from an ignitable liquid.
 – Gas may have been forced through small holes in the flooring.

Beveling (3 of 3)

• Direction of fire travel is determined by examining the sides of the hole and the slope created by the fire.
 – Wide hole and downward slope indicates fire travel from above.
 – Wider on the bottom and sloped upward indicates fire travel from below.

Irregular Patterns

• Irregular patterns can be misinterpreted.
• Investigator should work to identify fuel that caused pattern.
• If an ignitable liquid is suspected, samples should be submitted for laboratory analysis.

Pattern Geometry (1 of 2)

• Fire and smoke produce variety of distinctive patterns
• Multiple interpretations possible

Pattern Geometry (2 of 2)

• Examples:
 – V-shaped patterns from fire plume
 – Inverted cone patterns created by vertical flame plume not reaching ceiling level
 – Hourglass patterns from fuel package at the base, near a vertical surface
 – Truncated cone patterns from intersection of a cone pattern on vertical and horizontal surfaces
Fire Pattern Analysis

• Process of identifying and interpreting fire patterns to determine how they were created
• Two basic types
 – Heat (intensity) patterns
 – Fire spread (movement) patterns

Heat (Intensity) Patterns

• As a fuel item is exposed to heat and flames, patterns are created.
• Lines of demarcation indicate:
 – Direction of fire travel
 – Characteristics and amounts of fuel present

Fire Spread (Movement) Patterns

• Produced by growth, spread, and flow of combustion products
• Helpful in determining the original heat source

Summary (1 of 5)

• The examination of fire patterns allows the investigator to determine the direction of fire travel as well as the point of origin.
• Fire patterns may be created by flame impingement, hot gases, smoke, and other products of combustion.

Summary (2 of 5)

• The area of most damage may not indicate the point of origin.
• Factors such as ventilation, fire suppression activities, and types of materials that are burning will influence the severity of damage as well as the direction of fire travel during a fire.

Summary (3 of 5)

• Glass that displays crazing indicates rapid cooling.
• Spalled concrete, brick, and mortar may indicate rapid heating of the surface.
• Incandescent light bulbs that are equal to or greater than 25 watts will tend to push outward toward the heat source, whereas those less than 25 watts will collapse inward.

• Penetrations in floors may be the result of ignitable liquids; however, they can also be caused by smoldering items, the effects of ventilation, and areas exposed to flashover conditions.